

QUEEN'S UNIVERSITY IONIC LIQUID LABORATORIES

QUILL

The electrochemistry of new borate anions

Haris Amir

Supervisors: Professor John D. Holbrey and Professor Małgorzata Swadźba-Kwaśny

CONFIDENTIAL - QUILL, 25th March 2024

Abbreviations

QUEEN'S UNIVERSITY
ONIC LIQUID
LABORATORIES
QUILL

- LIBs Lithium ion batteries
- SIBs Sodium ion batteries
- OIPCs Organic ionic plastic crystals
- SEI Solid electrolyte interphase
- DSC Differential scanning calorimetry

Overview

- The future of batteries
- Organic ionic plastic crystals
- Diffusion NMR spectroscopy
- Electrochemistry of Na borate salts

Lithium vs. sodium batteries

- Lithium ion battery (LIB) are used in most electronic devices/vehicles
- Limited lithium availability price increase (\$5000/tonne in 2010)
- Sodium ion battery (SIB) best candidate (\$135 – 165/tonne)

Electrolytes

- Fluorinated sodium salts form promising solid electrolyte interphase
- Global movement to move away from using fluorinated industrially
- Sodium borates looked at as greener alternatives

Decrease in halogenation

New borate anions

- 5-membered cyclic borate anions are thermodynamically stable
- The B-N containing ILs have a higher thermal stability
- B-N bond length (1.45 Å) are shorter than B-O bonds (1.66 Å)
- Viscosity of [B(NO)] was found to be lower than the common [BScB] anion

Organic ionic plastic crystals (OIPCs)

- They consist of long-range ordered crystalline lattice
- Go through one or more solid-solid phase transition
- Introduces crystallographic changes with short range disorder arises from rotational motions of the molecule
- Behaviour is found to be favoured when used as an electrolyte

DSC of $[P_{4444}][B(pyrazole)_4]$

Phase II – phase I: $\Delta S = 3.17 \text{ J K}^{-1} \text{ mol}^{-1}$

 $[P_{4444}][B(pyraozle)_4]$

Conductivity of [P₄₄₄₄]⁺ based OIPCs

QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

Solid state NMR spectroscopy

LABORATORIES QUILL

- Molecules have a fixed orientation relative to the magnetic field the anisotropy of the various interactions needs to be considered.
- Gives information about the kinetics of the molecules static or dynamic.

³¹P NMR 60 °C

Dynamics of [P₄₄₄₄]⁺ based OIPCs

Line width of ³¹P spectra for OIPCs

Dynamics of [P₄₄₄₄]⁺ based OIPCs

Line width of ¹¹B spectra for OIPCs

Diffusion coefficient of the phosphonium cation in [P₄₄₄₄] base ionic liquids

Diffusion coefficient of the phosphonium cation in [P₄₄₄₄] base ionic liquids

Electrochemistry studies

Top cap

Spring

Spacer

Anode

Electrolyte

Separator

Cathode

Bottom cap

PEIS – resistance of a material

OCV – the rest potential can be recorded, commonly used as preconditioning time

CV – determine oxidative and reductive species

CA – measure the current response to an applied potential step, used to look at the surface area of the working electrode.

CV - Coin cell

Significance of SEI

- SEI Solid electrolyte interphase
- Ion conductive yet electron-insulating layer on electrodes
- Formed by the reductive decomposition of electrolytes during the initial charge
- SEI layer has a crucial role on the safety, power, and lifetime of batteries
- Typical compositions of an SEI layer in lithium-ion batteries is Li₂CO₃, LiF or ROCO₂Li (R = alkyl groups)

17

QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

Na anode N

 $Na[B(C_3H_7NO)_2]$

Cu cathode

Na electrode O 35 %, C 10 %, Na 55%

Cu electrode N 7 %, O 18 %, C 8%, Na 9%, Cu 58%

Summary

QUEEN'S UNIVERSITY
BELFAST

QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

- DSC confirms the presence of a solid-solid transition, [P₄₄₄₄]⁺ based OIPCs
- [P₄₄₄₄]⁺ OPICs show similar conductivity to known fluorinated OIPCs
- The phosphonium cation significantly more mobile
- H-bonding may be playing a role in the diffusion of $[P_{4444}]^+$ based ionic liquids
- SEM shows formation of SEI layer

Future work

- Investigate the performance of OIPCs as solid electrolyte
- Simulation modelling to investigate how the cation and anion interact
- Determine if the SEI formation helps improve the performance of Na batteries

Acknowledgements

- Professor John D. Holbrey
- Professor Małgorzata Swadźba-Kwaśny
- Professor Maria Forsyth
- Professor Michel Armand
- Dr Mega Kar
- Dr Ajit Kumar
- Ms Margaux Guiraud

